Abstract

Numbers are thought to be spatially organized along a left-to-right horizontal axis with small/large numbers on its left/right respectively. Behavioral evidence for this mental number line (MNL) comes from studies showing that the reallocation of spatial attention by active left/right head rotation facilitated the generation of small/large numbers respectively. While spatial biases in random number generation (RNG) during active movement are well established in adults, comparable evidence in children is lacking and it remains unclear whether and how children’s access to the MNL is affected by active head rotation. To get a better understanding of the development of embodied number processing, we investigated the effect of active head rotation on the mean of generated numbers as well as the mean difference between each number and its immediately preceding response (the first order difference; FOD) not only in adults (n = 24), but also in 7- to 11-year-old elementary school children (n = 70). Since the sign and absolute value of FODs carry distinct information regarding spatial attention shifts along the MNL, namely their direction (left/right) and size (narrow/wide) respectively, we additionally assessed the influence of rotation on the total of negative and positive FODs regardless of their numerical values as well as on their absolute values. In line with previous studies, adults produced on average smaller numbers and generated smaller mean FODs during left than right rotation. More concretely, they produced more negative/positive FODs during left/right rotation respectively and the size of negative FODs was larger (in terms of absolute value) during left than right rotation. Importantly, as opposed to adults, no significant differences in RNG between left and right head rotations were observed in children. Potential explanations for such age-related changes in the effect of active head rotation on RNG are discussed. Altogether, the present study confirms that numerical processing is spatially grounded in adults and suggests that its embodied aspect undergoes significant developmental changes.

Highlights

  • Knowledge and thinking are constrained by sensory-motor processes in that motor activities and other sensory-bodily experiences influence the cognitive processing of abstract concepts (Barsalou, 2008)

  • We focused on the arithmetic difference between each generated number and its immediately preceding response and determined whether the mean of first order difference (FOD) in each participant differed between active left/right head rotation

  • The absence of evidence for a significant difference in random number generation (RNG) between left and right rotation in children should not be directly considered as evidence of absence of an effect of active head rotation on RNG in the younger participants, the present findings suggest that the spatial bias in RNG during active head motion observed in adults likely only emerges at later developmental stages, at the earliest after 4th grade

Read more

Summary

Introduction

Knowledge and thinking are constrained by sensory-motor processes in that motor activities and other sensory-bodily experiences influence the cognitive processing of abstract concepts (Barsalou, 2008) The idea of such “embodied cognition” has become increasingly influential and numerical thinking can be considered as one principle example of it (Lakoff and Nunez, 2000). Grounded numerical cognition refers to the idea that numerical representations reflect the universal laws of the physical world in that small/large numbers are associated with lower/upper space respectively. Situated numerical cognition suggests that number-space associations can be directly modulated by the current constraints and context of a situation, including both external stimuli as well as body posture. This level of knowledge representation is very flexible and instantly adapts to concurrent task demands. Participants produced more smaller/larger numbers while rotating their head toward the left/right respectively (see Winter and Matlock, 2013)

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.