Abstract

BackgroundThe pathogenic mold Aspergillus fumigatus is the most frequent infectious cause of death in severely immunocompromised individuals such as leukemia and bone marrow transplant patients. Germination of inhaled conidia (asexual spores) in the host is critical for the initiation of infection, but little is known about the underlying mechanisms of this process.ResultsTo gain insights into early germination events and facilitate the identification of potential stage-specific biomarkers and vaccine candidates, we have used quantitative shotgun proteomics to elucidate patterns of protein abundance changes during early fungal development. Four different stages were examined: dormant conidia, isotropically expanding conidia, hyphae in which germ tube emergence has just begun, and pre-septation hyphae. To enrich for glycan-linked cell wall proteins we used an alkaline cell extraction method. Shotgun proteomic resulted in the identification of 375 unique gene products with high confidence, with no evidence for enrichment of cell wall-immobilized and secreted proteins. The most interesting discovery was the identification of 52 proteins enriched in dormant conidia including 28 proteins that have never been detected in the A. fumigatus conidial proteome such as signaling protein Pil1, chaperones BipA and calnexin, and transcription factor HapB. Additionally we found many small, Aspergillus specific proteins of unknown function including 17 hypothetical proteins. Thus, the most abundant protein, Grg1 (AFUA_5G14210), was also one of the smallest proteins detected in this study (M.W. 7,367). Among previously characterized proteins were melanin pigment and pseurotin A biosynthesis enzymes, histones H3 and H4.1, and other proteins involved in conidiation and response to oxidative or hypoxic stress. In contrast, expanding conidia, hyphae with early germ tubes, and pre-septation hyphae samples were enriched for proteins responsible for housekeeping functions, particularly translation, respiratory metabolism, amino acid and carbohydrate biosynthesis, and the tricarboxylic acid cycle.ConclusionsThe observed temporal expression patterns suggest that the A. fumigatus conidia are dominated by small, lineage-specific proteins. Some of them may play key roles in host-pathogen interactions, signal transduction during conidial germination, or survival in hostile environments.

Highlights

  • The pathogenic mold Aspergillus fumigatus is the most frequent infectious cause of death in severely immunocompromised individuals such as leukemia and bone marrow transplant patients

  • Selection of time points that represent distinct stages of early fungal development for proteomics analysis In most fungi, conidial dormancy is controlled by exogenous factors such as the availability of moisture, oxygen and nutrients [12]

  • To select specific stages for proteomics analysis, A. fumigatus conidia were inoculated in glucose complete medium and sequential samples were examined microscopically for developmental landmarks every 30 min

Read more

Summary

Introduction

The pathogenic mold Aspergillus fumigatus is the most frequent infectious cause of death in severely immunocompromised individuals such as leukemia and bone marrow transplant patients. Germination of inhaled conidia (asexual spores) in the host is critical for the initiation of infection, but little is known about the underlying mechanisms of this process. Aspergillus fumigatus is the most common airborne fungal pathogen, which can infect ever increasing numbers of patients with lung disease, immune system disorders or undergoing immunosuppression therapy [1]. In patients with asthma and cystic fibrosis, it can cause allergic diseases like allergic bronchopulmonary aspergillosis In immunosuppressed individuals such as leukemia and bone marrow transplant patients, inhalation of A. fumigatus conidia (asexual spores) can cause invasive aspergillosis (IA), a life-threatening disease, which is difficult to diagnose and treat. Previous proteomic studies have identified a number of proteins involved in early stages of A. fumigatus development and early interactions with the human host [4]. The methods helped to identify reactive oxygen detoxification enzymes, pigment biosynthesis enzymes and other highly abundant proteins in the A. fumigatus conidial proteome [5,6,7,8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.