Abstract

Practical experience demonstrates that the development of agriculture is following the path of automating and robotizing operational processes. The operation of feed pushing in the feeding alley is an integral part of the feeding process and significantly impacts dairy cattle productivity. The aim of this research is to develop an algorithm for automatic positioning and a mobile remote-control system for a wheeled robot on a dairy farm. The kinematic and dynamic motion characteristics of the wheeled robot were obtained using software that allows simulation of physical processes in an artificial environment. The mobile application was developed using Swift tools, with the preliminary visualization of interfaces and graphic design. The system uses technical vision based on RGB cameras and programmed color filters and is responsible for the automatic positioning of the feed-pusher robot. This system made it possible to eliminate the inductive sensors from the system and suspend the labor effort required for assembling the contour wire of the feed alley. By assessing the interaction between the mobile app and the feed pusher via the base station connected to the Internet and located on the farm, the efficiency and accuracy of the feedback was measured. Furthermore, remote changes in the operating regime of the robot (start date) were proven to be achievable, and the productiveness of the food supplement dispenser also became manageable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.