Abstract
Herein, a novel molecularly imprinted gel (MIG)-based electrochemical sensor equipped with hydrated zirconium oxide@hollow carbon spheres (ZrO(OH)2@HCS) was developed for highly sensitive and selective detection of tert-butylhydroquinone (TBHQ) in foods. The MIG was synthesized by using L-histidine to rapidly cross-link cationic guar gum, acrylamide and TBHQ through intermolecular hydrogen bonds and electrostatic interactions at room temperature, which offered outstanding specific recognition performance for TBHQ. ZrO(OH)2@HCS possessing excellent conductivity and water dispersibility was employed for signal amplification. Under optimal conditions, the MIG-ZrO(OH)2@HCS/GCE sensor showed a wide dynamic detection range (0.025–100 μM) with a low limit of detection (6.7 nM). TBHQ recovery experiments were conducted in spiked peanut oil and milk powder, yielding excellent recoveries. Moreover, the sensor was successfully utilized to detect TBHQ levels in snowflake chicken cutlets, crispy fried pork and boneless chicken fillets, and the results were in agreement with those obtained by the high performance liquid chromatography method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.