Abstract

This paper presents finite element model (FEM) based virtual load rating method for accurately and efficiently evaluating the bearing capacity of taxiway bridge in the field under aircraft taxiing. A dynamic load coefficient of aircraft loading was first developed considering deck pavement roughness and aircraft lift force. The in situ responses of taxiway bridges under 10 aircraft were collected using instrumentation system with acceleration sensor, strain sensor, and inclinometer. The modal frequency, strain influence lines, and deflections of taxiway bridge were obtained from FE analysis and in situ test. An optimization objective function in terms of fundamental frequency and strain influence lines was formulated to ensure convergence and effectiveness in the model updating process, wherein the bending stiffness, density and boundary conditions of the structures are selected as the design variables. The weighted-average method of model updating parameters was proposed considering the differences in the obtained parameters under different loading conditions. The analysis results of updated FE model were validated using static loading test conducted on taxiway bridge. Finally, the proposed virtual load rating method was applied to Taxiway Bridge V in Guangzhou Baiyun International Airport (CAN).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.