Abstract

Laser probing diagnostics at the wavelength of 266 nm were developed for investigation of the 1-MA z-pinch plasmas. The absorption and refraction in plasma are significantly smaller at 266 nm than at the regular wavelength of 532 nm. These features allow observation of fine details in the z-pinch plasma at the ablation, implosion, and stagnation phases. Two-color shadowgraphy at 532/266 nm presents a structure of ablating wires and implosion bubbles in wire arrays. Plasma distribution and dynamics in compact cylindrical, star, and planar wire arrays can be studied at the wavelength of 266 nm. An electron density Ne > 5 · 1019 cm-3 was reconstructed with interferometry at 266 nm in the stagnated z-pinch. Further development of laser probing diagnostics of the z-pinch plasmas is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.