Abstract

A highly active and stable catalyst/support system is developed by using a two-step process. In the first step, activated carbon composite support (ACCS) is synthesized that retains its activity after accelerated stress test (AST). A 30% Pt/ACCS catalyst shows no loss of mass activity and power density after 5000 cycles at 1.0–1.5 V while the commercial Pt/C and Pt/290G catalysts show drastic mass activity losses (57.5% and 66.2%, respectively) and power density losses (88.7% and 84.0%, respectively). In the second step, Pt catalyst with a compressive Pt lattice (Pt∗) is synthesized through a USC-developed annealing procedure in which Co atoms previously embedded in the support diffuse into Pt. The 30% Pt∗/ACCS shows high initial power density (rated) of 0.174 gPt kW−1 and high stability of 24 mV loss at 0.8 A cm−2 with an electrochemical active surface area (ECSA) loss of 42% after 30,000 cycles (0.6–1.0 V). The support stability under 1.0–1.5 V potential cycling shows potential loss of 8 mV at 1.5 A cm−2 and ECSA loss of 22% after 5000 cycles. Improved stability and activity of Pt*/ACCS catalyst are due to synergistic effect of catalytic activity and stability of ACCS and formation of compressive Pt lattice catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.