Abstract

In recent years, the development of calcium phosphate/clay composites for bone tissue engineering attracted a lot of interest. In this study, novel bio-composites composed of hydroxyapatite (HAP), α and β-tricalcium phosphate (α, β-TCP) and sodium-montmorillonite (MNa) were developed. The composites were prepared by sintering at 900 °C of calcium-apatite powders in the presence of various amounts of MNa. The calcium-apatite precursors were prepared by the wet precipitation method with two desired Ca/P molar ratios (1.660 and 1.623). Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to characterize the prepared composites. The results showed that during the sintering process, a surface interaction apatite/MNa led to the incorporation of clay ions into the apatite structure resulting in its decomposition and formation of composite ceramics comprising HAP, β and α-TCP. The decomposition of apatite increased with increasing MNa content and with decreasing Ca/P ratio. The decomposition of stoichiometric HAP led to triphasic ceramics with substituted-HAP as the major phase while the decomposition of calcium-deficient HAP led to triphasic ceramics with substituted-α-TCP as the major phase. Combination of MNa–clay phase and substituted-α-TCP can improve both mechanical and biological properties of the prepared composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.