Abstract

The development of solid oxide fuel cells (SOFCs) and gas separation membranes for fossil (fuel?) power plants has previously suffered from cost issues like the manufacturing of the core components including i) the ceramic fuel cell and ii) the ceramic membrane, and from insufficient power density (current density or flow rate) on the stack, module or system level. Forschungszentrum Jülich has been working on SOFC development for 20 years, and on membrane development for 6 years. Both energy-related applications are based on similar materials systems, similar micro-structural features (porous-dense, coarse-fine), comparable application parameters (e.g. high temperature) and are manufactured with similar technologies. In the past the focus laid mostly on basic materials research and proving the functionality of the membranes or fuel cells. Meanwhile, one key topic has been the application of low-cost thin-film high-throughput manufacturing technologies. This includes the fabrication of the supports (mostly tape-casting), the coating with functional layers by ceramics technologies (screen printing, roll coating) and the reduction of sintering steps and temperatures. Additionally special thin-film technologies like sol-gel technique and electron beam evaporation / sputtering have also been applied for functional layers, depending on the functional necessities. The presentation gives an overview regarding the state-of-the-art in SOFC and gas separation membrane development at Forschungszentrum Jülich with an emphasis on the manufacturing technologies, resulting in optimized layer micro-structures and thickness. Additionally it summarizes the electrochemical and permeation data obtained so far.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.