Abstract

In the present study, optimization of various laser-processing parameters for the deposition of thick SiC coating on zircaloy-4 (Zry-4) tube is studied in view of the development of accident tolerant fuel clad material for current and future nuclear reactors with the enhanced safety. The SiC coatings are deposited using laser directed energy deposition (LDED). It is found to be quite challenging to deposit desired SiC coating on a thin (~400 μm) substrate of Zry-4 tubes due to either its excessive melting or damage. This is minimized largely by cooling the tube from inside by passing Ar gas (20 l min−1). It is observed that different processing parameters play a vital role on homogeneity, uniformity and defects-free SiC coatings as well as on the melting and oxidation of Zry-4 substrate. A uniform and homogeneous coating of SiC is deposited on Zry-4 at the optimized laser power density of 4.52 kW cm−2, powder feed rate of 2.71 g min−1and scan speed of 325 mm min−1. The interface between SiC coatings and substrate is characterized using different techniques such as optical microscopy, scanning electron microscopy and X-ray diffraction to access the homogeneity, uniformity, defects and to identify the different phases formed in the coated layer. Coated layer is found to be consisting of Zr(α), SiC, ZrSi2, ZrSi and ZrC types of phases and the same is also confirmed by the ThermoCalc(R) based ternary phase diagram. Further, the effect of processing parameters on substrate melting and the nature of SiC coating is explained by simulating the substrate temperature using COMSOL@ multi-physics. To the author's best knowledge, this would be the first study to report the laser directed energy deposition of SiC on Zry-4 alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.