Abstract

Genetic algorithms allow solution of more complex, nonlinear groundwater remediation design problems than traditional gradient‐based approaches, but they are more computationally intensive. One way to improve performance is through inclusion of local search, creating a hybrid genetic algorithm (HGA). The inclusion of local search helps to speed up the solution process and to make the solution technique more robust. This technical note focuses on the development and application of a new HGA, the enhanced self−adaptive hybrid genetic algorithm (e‐SAHGA), which is an enhancement of a previously developed HGA called SAHGA. The application of the e‐SAHGA algorithm to a hypothetical groundwater remediation design problem showed 90% reliability in identifying the optimal solution faster than the SGA, with average savings of 64% across 100 random initial populations. These results are considerably improved over SAHGA, which attained only 80% reliability and 14% average savings on the same initial populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.