Abstract

The 10–11 July 2015 partial collapses of the lava dome in the crater of Volcán de Colima, México, were accompanied by a sequence of two-stage multiple PDCs, separated by a 15-h interval, with a total bulk volume of 14.2×106m3 of fragmentary material and runout distances reaching 9.1 and 10.3km, respectively (Reyes-Dávila et al., 2016). Broad-band seismic signals, associated with the PDCs and recorded at seismic station EZ5 installed at a distance of 4km from the crater, were used for analysis of the 20-h eruption process. This process included two stages of the multiple PDCs emplacements, two one-hour periods of preliminary events to each of the stages, and the inter-stage period. Analysis of seismic signals allowed us to identify the types of volcanic events composing this eruption episode and estimate their quantitative characteristics and spectral parameters of generated seismic signals. It was shown that the seismic signals produced by PDCs emplacements, recorded during the two stages, were characterized by different characteristics. The second stage PDCs had radiated greater seismic energy than the PDCs emplaced during the first stage. Spectral analysis of the seismic signals, produced by PDCs, indicates a clearly separation in frequency content at 1.95Hz between the higher-frequency events of the first stage and the lower-frequency events of the second stage of the PDCs emplacements. The obtained difference in the spectral contents of the seismic signals, produced by the movement of two multiple PDCs, may be supposed as a consequence of the proposed relative difference in the volumes of the PDCs of two multiple sequences due to a difference in the level of radiated seismic energy and a change in bottom conditions of the ravines during their passing along the ravines. Results of seismic study were used in discussion of the nature of the two-stage eruptive process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.