Abstract

A supersonic metastable helium (2 1S) pulsed beam source, which consists of an electromagnetic valve, a collimation skimmer, and discharge electrodes for production of a plasma, has been constructed, which is essential for the direct measurement of electric fields in plasmas by means of polarization laser-induced fluorescence spectroscopy. A supersonic helium atomic beam with a short pulselength (∼300 µs), narrow divergence (∼1.1°), and high density of ∼1.4×1014 cm-3 has been achieved. In order to generate metastable atoms in this beam source, a Penning-type discharge was employed, which is suitable for producing stable plasma with high temperature, even at low gas densities, due to the particular configuration of electrodes together with a magnetic field. Spectroscopic observations indicated that the temporal behaviors of neutral atom and ion emissions were almost the same as that of the helium atom profile, and on increasing the discharge voltage applied between electrodes, the spectral intensity increased approximately linearly. Moreover, the fact that the ion emission can also be observed showed that it was probable that a high-temperature plasma was generated by the Penning discharge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.