Abstract
Sorghum’s natural adaptation to a wide range of abiotic stresses provides diverse genetic reserves for potential improvement in crop stress tolerance. Growing interest in sorghum research has led to the expansion of genetic resources though establishment of the sorghum association panel (SAP), generation of mutagenized populations, and recombinant inbred line (RIL) populations, etc. Despite rapid improvement in biotechnological tools, lack of efficient phenotyping platforms remains one of the major obstacles in utilizing these genetic resources. Scarcity of efforts in root system phenotyping hinders identification and integration of the superior root traits advantageous to stress tolerance. Here, we explored multiple approaches in root phenotyping of an ethyl methanesulfonate (EMS)-mutagenized sorghum population. Paper-based growth pouches (PGP) and hydroponics were employed to analyze root system architecture (RSA) variations induced by mutations and to test root development flexibility in response to phosphorus deficiency in early growing stages. PGP method had improved capabilities compared to hydroponics providing inexpensive, space-saving, and high-throughput phenotyping of sorghum roots. Preliminary observation revealed distinct phenotypic variations which were qualitatively and quantitatively systemized for association analysis. Phenotypes/ideotypes with root architecture variations potentially correlated with Pi acquisition were selected to evaluate their contribution to P-efficiency (PE). Sand mixed with P-loaded activated alumina substrate (SAS) provided closely to natural but still controlled single-variable conditions with regulated Pi availability. Due to higher labor and cost input we propose SAS to be used for evaluating selected sorghum candidates for PE. The ability of rapidly screening root phenotypes holds great potential for discovering genes responsible for relevant root traits and utilizing mutations to improve nutrient efficiency and crop productivity.
Highlights
Sorghum is known for its tolerance to drought and nutrient deficiencies due to root system adaptations [1] [2]
Due to the need for identification of quantitative trait loci (QTL) and genes associated with root traits, the emphasis has shifted to systems that can provide inexpensive, efficient, high throughput phenotyping such as paper pouches [5] [6] [7]
An alternative approach can be used in screening mutagenized population (MP) directly in sand-alumina system (SAS) and identifying the distinctive root traits contributing to superior plant performance
Summary
Sorghum is known for its tolerance to drought and nutrient deficiencies due to root system adaptations [1] [2]. Due to the need for identification of quantitative trait loci (QTL) and genes associated with root traits, the emphasis has shifted to systems that can provide inexpensive, efficient, high throughput phenotyping such as paper pouches [5] [6] [7]. While some of these methods have been used, only few were employed in sorghum root phenotyping, narrowly focused on specific traits [8] and left large unexplored areas of root development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.