Abstract
In this study, a novel reliability-corrected cost model for estimating the development cost of highly agile small EO (Earth Observation) satellites is presented. In order to develop the cost model of highly agile small EO satellites, a database has been constructed consisting of 49 satellites carrying electro-optical payloads and having a launch mass between 100kg and 1,000kg that have either been developed or being developed within a time frame from 1991 to 2011. The cost model of top-down type was developed by analyzing the database statistically. The reliability-corrected CER (Cost Estimating Relationships) developed in this study implement multiple parameters-based complexity indexes. In addition, the Cost Correction Factor (CCF) and Low Cost Small Satellite (LCSS) adjustment factor were newly introduced as additional parameters for cost estimation. The reliability-corrected CERs for 26 EO satellites were used for verification of the cost model developed in this study. It was observed that there are approximately 7% of absolute average errors in the reliability-corrected CER. It is concluded that this cost model can provide cost estimates with a higher accuracy, as compared to conventional cost models such as USCM and SSCM. Finally, this paper also describes the results of cost estimation obtained by applying the developed cost model to highly agile small electro-optical satellites having specific performance requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.