Abstract

High power CO<sub>2</sub>, YAG and LD-pumped solid-state lasers have been developed to produce a deep penetration type of high-quality, high-performance and high-speed weld joints. However, porosity is easily formed in such deep keyhole-type weld beads. The authors have developed microfocused X-ray transmission imaging system, and revealed keyhole behavior and porosity formation mechanism in high power laser welding. This paper will describe a summary of porosity formation mechanism and prevention procedures during cw laser welding of aluminum alloys. Especially, many bubbles were formed by the evaporation of the metals from the bottom tip of the keyhole and flowed upwards according to the liquid flow near the solid-liquid interface inside the molten pool. The majority of them were trapped and captured at the solidifying front of the weld beads, leading to the formation of porosity. Moreover, it was revealed that the shielding gas was chiefly included in the porosity. Main melt flows were observed as a function of welding speed. As the speed was increased, vapor plume was ejected from the keyhole inlet more and more normal to the plate surface, and consequently induced the upward flow of the keyhole-surrounding liquid. On the basis of the above knowledge, full penetration welding, properly pulse-modulated laser welding, vacuum or low pressure welding, welding using the tornado nozzle, very low or high speed welding, and so on were investigated, and it was consequently confirmed that these procedures were beneficial to the reduction in porosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.