Abstract

Protein molecules, which typically have a hydrophobic core and a zwitterionic shell with a polypeptide backbone, could be ideal materials for nanodrug vehicles (NDVs) with low side effects. Here, we synthesized poly(l-aspartic acid(lysine))-b-poly(l-lysine(Z)) (PAsp(Lys)-b-PLys(Z)) (PALLZ), a novel amphiphilic block polypeptide with key structures of protein to investigate the possibility for use as a NDV. This polypeptide can spontaneously self-assemble into micelles in aqueous solution with a zwitterionic brush (the PAsp(Lys) part) to provide the nonfouling shell and a hydrophobic core (the PLys(Z) part) for loading hydrophobic drugs. The doxorubicin (DOX) loaded PALLZ micelles showed excellent resistance to nonspecific protein adsorption in FBS, which leads to very low internalization. Moreover, PALLZ micelles showed no cytotoxicity to MCF7, HeLa and HepG-2 cells up to 500 μg mL-1. All these results indicated that zwitterionic amphiphilic block polypeptides could be promising materials for NDVs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.