Abstract

Liver specific polymeric nanoparticles were designed and synthesized from biotinylated poly(ethylene glycol) conjugated with lactobionic acid containing a galactose moiety (abbreviated as BEL). Synthesized BEL conjugate was identified by Fourier transform-infrared (FT-IR) and 1 H -nuclear magnetic resonance (NMR) spectroscopy. The fluorescence spectroscopy data showed that BEL conjugate was self-assembled in water to form core-shell structure nanoparticles, and the critical association concentration (CAC) value was estimated as 0.028 g/l. From the transmission electron microscope (TEM) observation, the BEL nanoparticles were spherically shaped and ranged in size between 30 and 60 nm. The particle size distribution was measured by photon correlation spectroscopy (PCS), and the result was 41.2±11.7 nm. Anti-cancer drug all- trans-retinoic acid (ATRA) was loaded into the BEL nanoparticles for evaluating its efficacy as a drug delivery carrier. The crystallinities of ATRA and ATRA-loaded nanoparticles were examined by X-ray diffraction (XRD) patterns. The ATRA release kinetics from the BEL nanoparticles showed a pseudo zero-order pattern during 1-month period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.