Abstract

Neurodegenerative diseases such as dementia and Alzheimer's disease are caused by liquid-liquid phase separation (LLPS) proteins. LLPS is a phenomenon in which a dense liquid phase of proteins is formed in a liquid phase in which proteins are dispersed at a low concentration. The concentrated proteins enable highly efficient chemical reactions, but at the same time, there is a risk of forming insoluble aggregates that cause diseases. In fact, neurodegenerative disease-related proteins form insoluble aggregates, which cause great damage to nerves, resulting in memory and motor disorders. Drug discovery requires the design of drug candidates that can strongly bind to the intrinsically disordered region of a phase-separated protein and control the phase-separated state. This paper mainly introduces our research on peptide design that binds to phase-separated proteins. For peptide drug discovery, it is necessary to efficiently search for drug candidates among a huge number of peptides. As an efficient search method for peptides that control phase-separated proteins, we searched for amino acids that can control liquid-liquid phase separation, and devised a method for designing peptides containing effective amino acids. It was demonstrated that this method can be used to control the LLPS and solid aggregate formation of the neurodegenerative disease-related protein FUS. Furthermore, we devised a method for rationally designing a peptide that binds complementarily to the intrinsically disordered region of the target, and demonstrated the functional control of the cancer disease-related protein p53. Finally, we discuss the possibility of peptide drug discovery for disease-related LLPS proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.