Abstract

In this study, two novel low water-soluble sericin and alginate-based biosorbents were successfully developed for precious metal removal from wastewater: sericin and alginate particles chemically crosslinked by proantocyanidins (SAPAs) and sericin, alginate and polyvinyl alcohol particles (SAPVA). The proportions of proantocynidins (PAs) or polyvinyl alcohol (PVA) added to sericin (2.5% w/v) and alginate (2.0% w/v) blend were 0.5, 1.5, 2.5 and 3.5% w/v. Among these concentrations, particles produced with 0.5% w/v of PVA or 2.5% w/v of PAs presented the lowest water solubility percentages (3.74 ± 0.05 and 3.56 ± 0.21%, respectively) and the following metallic affinity order: AuCl4- > PdCl42- > PtCl62- > Ag+. Then, gold biosorption kinetics by SAPAs was evaluated at three gold initial concentrations (72.88, 187.12, and 273.79mg/L), and its performance was compared to activated carbon adsorbent uptake. The data modeling revealed that the process follows pseudo-first-order kinetics and is mainly controlled by external diffusion. SAPAs before and after gold biosorption (SAPAs-gold) were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, optical microscopy, helium pycnometry, mercury porosimetry, N2 physisorption, and Fourier-transform infrared spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.