Abstract

A sorghum core collection representing a wide range of genetic diversity and used in the framework of a sorghum breeding and genetics program was evaluated by near-infrared reflectance spectroscopy (NIRS) to predict food grain quality traits: amylose content (AM), protein content (PR), lipid content (LI), endosperm texture (ET), and hardness (HD). A total of 278 sorghum samples were scanned as whole and ground grain to develop calibration equations. Laboratory analyses were performed on NIRS sample subsets that preserved the core collection racial distribution. Principal component analysis performed on NIRS spectra evidenced a level of structure following known sorghum races, which underlined the importance of using a wide range of genetic diversity. Performances of calibration equations were evaluated by the coefficient of determination, bias, standard error of laboratory (SEL), and ratio of performance deviation (RPD). Ground grain spectra gave better calibration equations than whole grain. PR equation...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.