Abstract

Abstract In Japan, the Design Fatigue Curve (DFC) Phase 1 and Phase 2 subcommittees, which are a part of the Atomic Energy Research Committee of the Japan Welding Engineering Society, have proposed new design fatigue curves and fatigue analysis methods for carbon, low-alloy, and austenitic stainless steels. To confirm the validity of the proposed design fatigue curves, a Japanese utility collaborative project was launched, and the authors conducted fully reversed four-point bending fatigue tests for large-scale specimens of carbon steel and low-alloy steel plates. Subsequently, in a previous paper (PVP2018-84456), the authors reported that the fatigue lives determined by the best-fit curve proposed by the DFC subcommittee corresponded to those of approximately 1.5–7.0-mm-deep crack initiation in large-scale specimens. In this study, the fatigue crack initiation and propagation behavior observed in large-scale specimens was investigated by using a plastic replica and beach mark method. Similar to the case of small-sized specimens, in the large-scale specimens, multiple fatigue cracks initiated at an early stage of testing, and propagated with coalescence to penetrate the specimen width. However, no fatigue cracks were detected at the design fatigue life. Approximately 100-μm-long cracks were observed, albeit only after the specimen was subjected to a number of cycles that corresponded to approximately 3.5 times the design fatigue life. According to NUREG/CR-6909 Rev.1, the crack depths in small-sized round bar specimens at the fatigue lives, which are defined by 25%-stress-drop cycles, are reported to be approximately 3 mm. The results of the large-scale tests indicated that regardless of the specimen size, nearly the same phenomenon occurred on the specimen surface until approximately 3–4-mm-deep crack initiated. The size effect was mainly caused by the stress gradient. The finite element analysis indicated that the stress gradient in the large-scale specimen was gentle owing to the large thickness of the specimen, and the stress in the vicinity of the surface was considered to be uniform. In conclusion, the size effect was not apparent. As the same conclusion can be applied to considerably larger actual components, designers do not need to consider the size effect when designing pressure vessels or piping by using the design fatigue curve determined based on small-sized specimens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.