Abstract

Objective: Nanotechnology techniques are a creation and exploitation of materials, devices, and systems through the control of matter on the nanometer length scale, i.e., involvement of atoms, molecules, and supramolecular structures. Every existing treatment modalities against human immunodeficiency virus (HIV) offer a marginal increase in the life expectancy as chitosan was converted to its derivative aminoethyl chitosan by chemical method evaluated for anti-HIV activity.
 Methods: Isolation of chitosan from crab shell by chemical method involves four basic steps; protein separation, calcium carbonate separation, deproteinization, and demineralization.
 Results: The results revealed the anti-HIV activity of the prepared nanoparticulate system. Cytotoxicity assay of the nanoparticulate system was carried out and the cytotoxic concentration 50% (CC50) value was found to be 38.07±1.42 μg/ml, indicating that the nanoparticulate system is not cytotoxic. HIV-1 infection inhibition assay was carried out and the nanoparticulate system showed excellent inhibitory activity with a half-maximal inhibitory concentration (IC50) value of 3.75±0.57 μg/ml.
 Conclusions: It concludes, the CC50 and inhibitory concentration 50% IC50 values, the selectivity index of the nanoparticle was found to be 17.65 compared to the standard drug nevirapine (82.32), indicating the usefulness of the formulated nanoparticulate system as potential anti-HIV agent.

Highlights

  • Human immunodeficiency virus (HIV) infection is the causative agent for acquired immunodeficiency syndrome (AIDS); it is a public health problem

  • Determination of physicochemical characterization of chitosan powder [9,10] Moisture Moisture content of chitosan containing sample tubes was determined using the gravimetric method reported by Black et al Briefly, the samples were dried to constant weight in oven at 105°C and moisture content was calculated as follows:

  • Anti-HIV-1 activity was calculated by taking the mean read out in experimental group divided by the mean read out in infected cells in the absence of test compound multiplied by 100

Read more

Summary

Results

The results revealed the anti-HIV activity of the prepared nanoparticulate system. Cytotoxicity assay of the nanoparticulate system was carried out and the cytotoxic concentration 50% (CC50) value was found to be 38.07±1.42 μg/ml, indicating that the nanoparticulate system is not cytotoxic. HIV-1 infection inhibition assay was carried out and the nanoparticulate system showed excellent inhibitory activity with a half-maximal inhibitory concentration (IC50) value of 3.75±0.57 μg/ml

Conclusions
INTRODUCTION
RESULTS AND DISCUSSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.