Abstract

Recently, numerous researchers are interested in the development of new air filter because of air pollution caused by rapid industrialization and urbanization. The major concerns in developing air filters are: pressure drop and filtration efficiency which are considered significant. As the pressure drop increases, the energy consumption becomes high. In this study, we developed a novel air filter (polyurethane fiber mat) for nano size filtration using a mass production electrospinning, which is expected to enhance filtration efficiency and pressure drop effects. To determine the optimal electrospinning conditions for filter efficiency, various concentrations (8, 10, 12 wt/wt%) of thermoplastic polyurethane were prepared and employed. Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR) were used for fiber characterization, and finally, efficiency test was conducted to evaluate the filter performance of developed nanofiber-based air filter. From this study, it could be concluded that optimization by adjusting the polymer concentration and electrospinning operating condition was the best efficient alternative method to fabricate nano-fibrous air filter system with improved filtration performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.