Abstract

Abstract By synthetically combining the utilization of different fuels and the co-production of alternative fuels and power, a multifunctional energy system (MES) can present more opportunities to achieve higher efficiency, lower investment, and less environmental impact as compared to traditional energy systems. The principle for the integration of MES is systematically illuminated from the perspective of chemical conversion, energy utilization, and pollutants control. According to system integration characteristics, the development of MES has been classified into three stages, namely, polygeneration systems, MESs combining different fossil fuels, and MESs combining fossil fuel and renewable energy. Three MESs with primary energy savings (PESs) of 14–18% are introduced, which illustrated the potential of MES technology. At the same time, the increment of investment cost had been indicated as the major possible barriers for development of MES technology. On the basis of a comparison with other technical routes, super-critical power plants, and IGCC technology, the role of the MES in the sustainable development of China has been established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.