Abstract

Exploring the cadmium (Cd) pollution in rape is of great significance to food safety and consumer health. In this study, a rapid, nondestructive and accurate method for the determination of Cd content in rape leaves based on hyperspectral imaging (HSI) technology was proposed. The spectral data of rape leaves under different Cd stress from 431 nm to 962 nm were collected by visible-near infrared HSI spectrometer. In order to improve the robustness and accuracy of the regression model, a machine learning algorithm was proposed, named multi-disturbance bagging Extreme Learning Machine (MdbaggingELM). The prediction models of Cd content in rape leaves based on MdbaggingELM and ELM-based method (ELM and baggingELM) were established and compared. The results showed that the model of the proposed MdbaggingELM method performed significantly in the prediction of Cd content, with Rp2 of 0.9830 and RMSEP of 2.8963 mg/kg. The results confirmed that MdbaggingELM is an efficient regression algorithm, which played a positive role in enhancing the stability and the prediction effect of the model. The combination of MdbaggingELM and HSI technology has great potential in the detection of Cd content in rape leaves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.