Abstract

The paper considers issues pertaining to creation of a model for controlling road traffic with the purpose to minimize delays on street and road network, which is proposed as an innovative one while developing an intelligent transport system of the large city that is Minsk. The developed model has a complex structure of algorithmic support. The first-level model has been implemented on the basis of fuzzy logic, for which a program has been developed and conditions have been determined, and operation of traffic light at a real local intersection of Minsk, which is included in the automated traffic management system, has been simulated. Innovation in the first-level model is an approach in determining conditions while detecting a fuzzy set without using a standard algorithm that is an algorithm of local flexible regulation. The paper proposes and investigates a model that works on the basis of operationally obtained parameters of traffic flow intensity at characteristic points (sections) of street and road network. Efficiency of the first-level model has been equal to 8 % due to optimization of a traffic light cycle (reduction of transport delays during passage of stop lines). Results of the simulation using the proposed computer program have made it possible to improve efficiency of traffic management on the studied highway (Logoysky trakt) in Minsk city of Minsk by 15 % due to decrease of delay level in case of unilateral coordination. The algorithm has been already implemented as part of the current automated traffic management system in the city of Minsk and it has shown its efficiency. However this efficiency can be increased if it is used together with an algorithm for searching maximum volume of motion in a cycle with a distributed intensity pulse. It has been planned to take into account this specific feature when increasing possibilities for algorithmization of traffic management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.