Abstract

Agarose capsules were prepared using a droplet breakup method in a coflowing stream. Subsieve-size capsules 76±9 μm in diameter were obtained by extruding 4 wt% agarose solution from a needle (300 μm inner diameter) at a velocity of 1.2 cm/s into an ambient liquid paraffin flow of 20.8 cm/s. Increasing the flow rate of the liquid paraffin and decreasing that of the agarose solution resulted in a decreased resultant capsule diameter. Reduction in diameter from several hundred micrometers to subsieve-size (<100 μm) enhanced molecular exchange and mechanical stability. Measurements based on the percentage of intact mitochondria in the cells demonstrated that the viability of the enclosed cells was independent of capsule diameter. No significant difference was observed between the viabilities of cells enclosed in capsules with diameters of 79±8 and 351±41 μm ( p = 0.43 ). Compared with cells seeded in a tissue culture dish, the cells enclosed in the subsieve-size capsules showed 89.2% viability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.