Abstract

Bond quality and joint performance between laminated veneer lumber (LVL) and metal plates were investigated. Commercially fabricated LVL made of Douglas fir veneer and bonded with phenol-formaldehyde resin as well as three types of epoxy adhesives were used. Various surface preparations and treatments were applied to ordinary steel, stainless steel, and aluminum plates to remove the weak boundary layer that is incompatible with the resin and form a stable adherend layer that is chemically and mechanically compatible with the resin. Small specimens were tested in shear to search the most suitable metal surface for bonding with LVL. Generally, shear strength obtained for the specimens bonded with aluminum plates was lower than those bonded with ordinary steel plates. Among them chemically treated (ChT) and roughened (R) surfaces have demonstrated superior performance. To investigate strength performance and bond quality, LVL beams jointed with metal plates were tested while bending. The best results were obtained for specimens bonded with zinccoated metal plates, though good results were obtained also for ChT and R plates. However, the fracture proved to be fragile when no drift pins were used, even for high-performance surface treatments. The usage of drift pins was necessary to add toughness and avoid the brittle status of the fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.