Abstract

In this study, we compare the performance of solid oxide fuel cells (SOFC) having composite Cu-based anodes but made with the following low-temperature electrolytes: samaria-doped ceria (SDC), Sr- and Mg-doped lanthanum gallate (LSGM), and scandia-stabilized zirconia (ScSZ). Performance (V-I) curves and impedance spectra were measured using H 2 and n-butane fuels at 973 K. The results suggest that the use of electrolyte materials with higher ionic conductivity can lead to improved anodes for direct-utilization SOFC, although the performance of each of the cells in n-butane appears to be at least partially limited by the electrochemical oxidation reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.