Abstract

Due to its environmental and energy sustainability, electric vehicles (EV) have emerged as the preferred option in the current transportation system. Uncontrolled EV charging, however, can raise consumers; charging costs and overwhelm the grid. Smart charging coordination systems are required to prevent the grid overload caused by charging too many electric vehicles at once. In light of the baseload that is present in the power grid, this research suggests an improved reinforcement learning charging management system. An optimization method, however, requires some knowledge in advance, such as the time the vehicle departs and how much energy it will need when it arrives at the charging station. Therefore, under realistic operating conditions, our improved Reinforcement Learning method with Double Deep Q-learning approach provides an adjustable, scalable, and flexible strategy for an electric car fleet. Our proposed approach provides fair value which solves the overestimation action value problem in deep Q-learning. Then, a number of different charging strategies are compared to the Reinforcement Learning algorithm. The proposed Reinforcement Learning technique minimizes the variance of the overall load by 68 % when compared to an uncontrolled charging strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.