Abstract
Hydroxyapatite/polycaprolactone (HA/PCL) composites have been extensively explored in laser powder bed fusion (L-PBF) for bone tissue engineering. However, conventional mechanical mixing methods for preparing composite powders often yield inhomogeneous compositions and suboptimal flowability. In this study, HA/PCL powders were prepared and optimized for L-PBF using the modified emulsion solvent evaporation method. The morphology, flowability and thermal and rheological properties of the powders were systematically investigated, along with the mechanical and biological properties of the fabricated specimens. The HA/PCL powders exhibited spherical morphologies with a homogeneous distribution of HA within the particles. The addition of small amounts of HA (5 wt% and 10 wt%) enhanced the processability and increased the maximum values of the elastic modulus and yield strength of the specimens from 129.8 MPa to 166.2 MPa and 20.2 MPa to 25.1 MPa, respectively, while also improving their biocompatibility. However, excessive addition resulted in compromised sinterability, thereby affecting both mechanical and biological properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.