Abstract

During the recent years the performance of high power diode lasers in terms of output power and lifetime has increased significantly. However, for many applications not only a high output power but also a good beam quality is necessary -- in other terms, high brightness is required. While the beam quality of classical broad area-type high power diode lasers is poor, special laser structures have been developed to achieve an improved beam quality. Examples are the tapered laser, the alpha-DFB-laser and -- the latest development -- the so-called "z-laser." The z-laser uses internal total reflection for the suppression of higher-order modes. The effectiveness of this working principle was first demonstrated by performing extensive numerical simulations. During the last year the first z-laser structures have been processed and characterized. The experimental results of these first test lasers are compared with the predictions from the numerical simulations and show a very good agreement. With these first lasers, approximately 500 mW output power at 6-times diffraction limited beam quality have been demonstrated. Nevertheless, there are also some not well understood features of the z-laser to be investigated, like a reduced conversion efficiency and untypical characteristic curves showing kinks. Understanding these features, demonstrating the reproducibility of the structure and further performance improvements are the goals of current rsearch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.