Abstract

We present the fabrication and characterization of elastomeric optical waveguides, to be used for the manufacture of a conformable, water-resistant, and cost-effective pressure sensor that is amenable to the development of smart wearable health monitoring devices. To achieve this goal, high-sensitivity polydimethylsiloxane waveguides with a rectangular cross-section were fabricated. A new up-doping procedure, to tailor the refractive index of the ensuing waveguides, was experimentally developed using benzophenone additives. With this method we demonstrated a high refractive index change (up to +0.05) as a linear function of the benzophenone doping concentration. Propagation losses of about 0.37 dB/cm in the visible range and a high sensitivity to transverse compression of 0.10%/dB optical power loss were measured. It was also shown that one can further control the refractive index of the waveguide core and cladding regions through proper selection of the polydimethylsiloxane base to curing agent mixing ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.