Abstract

This article reports the removal of several emerging contaminants (ECs) from water using novel adsorbent comprising of β-cyclodextrin (β-CD) coated on silica. Fourteen different adsorbents were synthesized under different experimental conditions using two different crosslinking agents (hexamethylene diisocyanate (HMDI) and epichlorohydrin (EPI)) and co-polymers (glycidoxypropyl trimethoxysilane (GPTS) and aminopropyl triethoxysilane (APTES). The adsorption capacities of the synthesized adsorbents were initially evaluated using 17β-estradiol, perfluorooctanoic acid (PFOA), and bisphenol-A (BPA) as adsorbates. The adsorbent prepared by using HMDI as crosslinking agent with DMSO as solvent was observed to perform the best, and removed more than 90% of 17β-estradiol, PFOA, and BPA. Furthermore, the β-CD loading on the ECs removal was studied which showed that the adsorbate removal increases with increase in loading of β-CD on the substrate. The best adsorbent was resynthesized in seven batches and its performance was reproducible for the removal of ten steroid hormones. The adsorbent showed very good regeneration potential for four successive adsorption–regeneration cycles to remove steroid hormones and PFOA. A plausible mechanism of adsorption is proposed. The synthesized best adsorbent is characterized using FTIR, HR-TEM, TGA and nitrogen adsorption analysis. The TGA results showed that the adsorbent has thermal stability of upto 300°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.