Abstract
ABSTRACTSpent coffee grounds (SCG), poultry manure, and agricultural waste-derived biochar were used to manufacture functional composts through microbial bioaugmentation. The highest yield of tomato stalk-based biochar (40.7%) was obtained at 450°C with a surface area of 2.35 m2 g−1. Four pilot-scale composting reactors were established to perform composting for 45 days. The ratios of NH4+–N/NO3−–N, which served as an indicator of compost maturity, indicate rapid, and successful composting via microbial bioaugmentation and biochar amendment. Moreover, germination indices for radish also increased by 14–34% through augmentation and biochar amendment. Microbial diversity was also enhanced in the augmented and biochar-amended composts by 7.1–8.9%, where two species of Sphingobacteriaceae were dominant (29–43%). The scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) were enhanced by 14.1% and 8.6% in the fruits of pepper plants grown in the presence of the TR-2 (augmentation applied only) and TR-3 (both augmentation and biochar amendment applied) composts, respectively. Total phenolic content was also enhanced by 68% in the fruits of the crops grown in TR-3. Moreover, the other compost, TR-L (augmentation applied only), boosted DPPH scavenging activity by 111% in leeks compared with commercial organic fertilizer, while TR-3 increased the phenolic content by 44.8%. Composting facilitated by microbial augmentation and biochar amendment shortened the composting time and enhanced the quality of the functional compost. These results indicate that functional compost has great potential to compete with commercially available organic fertilizers and that the novel composting technology could significantly contribute to the eco-friendly recycling of organic wastes such as spent coffee grounds, poultry manure, and agricultural wastes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Environmental Science and Health, Part B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.