Abstract

Recently, a series elastic actuator (SEA) has emerged as a potential actuator system for various robotic applications where safe and precise interactive force control is required. Even though lots of research has been conducted on the mechanical/controller design and the development of applications for SEAs, the accurate force observation issue has not been highlighted much. Only the simple law, that is, the spring in an SEA can measure interactive force has been repeatedly mentioned and utilized. However, this is not true when the load-side dynamics affects the spring deformation significantly. This paper tackles this problem by demonstrating the imprecise force observation of the spring deformation and proposing two types of external force observers to address the problem. A reaction force-sensing SEA (RFSEA) is adopted in this paper, and its dynamic characteristic is analyzed in detail using the Lagrangian mechanics. Based on the analyzed dynamics, force observers are designed and verified through simulations and experiments. An XY stage driven by RFSEAs is developed so that the stage can be force controlled, and the proposed force observers are applied to this. Human interactive forces on the developed XY stage, the impedance of which is controlled in several ways, are estimated and compared with a force plate. Various experimental results validate the performance and potential of the proposed force observer for SEA systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.