Abstract

The flow in the near-field wake region of a generic transport aircraft configuration has been studied using both unsteady RANS and delayed detached-eddy simulations. The NASA Common Research Model has been used for this purpose, as experimental data obtained with this model in the cryogenic European Transonic Wind Tunnel during the ESWIRP test campaign were available for comparison and validation. Focusing on high angles of attack of \(\alpha = 16^\circ\) and \(\alpha = 18^\circ\), the results form the basis for the study of flow phenomena occurring at stall conditions. Such flight conditions are characterized by massive flow separation at the wing and highly unsteady flow in the wake. In a first step, the numerical results are compared with available test data using global force coefficients and pressure distributions on the wing. Both show a good agreement of numerical and experimental results, indicating slight deviations of the pressure variable at the inboard wing sections. In a second step, the turbulent structures of the near-field wake are examined using the proper orthogonal decomposition method based on snapshots (two-dimensional instantaneous flow fields). Frequencies of the first mode-pair match the dominant frequencies of the lift and velocity wake spectra very well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.