Abstract

It remains a formidable challenge to develop supercapacitors having both high stretchability and electrochemical performance. A ternary polymer composite was herein developed by engineering graphene platelets (GnPs), poly (3,4-ethylenedioxythiophene) (PEDOT) and manganese dioxide (MnO2) into a kitchen sponge. Cost-effective GnPs having an electrical conductivity of 1460Scm−1 were deposited onto the sponge pore surface by a simple dipping and drying process, followed by in situ polymerization of 3,4-ethylenedioxythiophene. MnO2 was then deposited onto the GnPs and PEDOT layers through soaking the GnP/PEDOT sponge into KMnO4 solution. When the composite was used as the electrodes for a flexible, stretchable supercapacitor, we obtained not only high specific capacitance but a high stretchability up to 400%. The supercapacitor demonstrated a specific capacitance of 802.99Fg−1 and an energy density of 55.76Whkg−1, with 99% capacitance retention over 1000 stretching cycles; these are attributed to the synergy between the composite components as well as the wavy device structure. The mass and thickness of the MnO2 layer was found to increase with the soak, leading to the enhancement of electrochemical performance of GnP/PEDOT/MnO2 sponge electrodes, i.e. 368.96Fg−1 for 5min and 740.25Fg−1 for 10min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.