Abstract

Using Gasteiger's partial equalization of orbital electronegativity (PEOE) method, we constructed ecotoxicity prediction equations based on two-dimensional descriptors for α,β-unsaturated carbonyl compounds. After examining electrostatic effects on the calculated ecotoxicities of 10 α,β-unsaturated ketones and aldehydes (A-group compounds) by using the Mulliken atomic charges on the carbonyl oxygen atoms, we investigated the efficacy of the PEOE descriptors for the same 10 compounds and the correlation between the PEOE descriptors and the Mulliken charge. We then constructed QSAR models for acute fish and Daphnia toxicities by using the PEOE descriptors for acrylic acids and compounds with acrylate-like substructures (CH-group compounds). In the constructed models, the adjusted squared correlation coefficients between measured and calculated toxicities with the lowest Akaike information criterion were 0.77 and 0.79, respectively. The applicability of the constructed models was then evaluated for various methacrylates and similar compounds (CH3-group compounds). Both the fish and the Daphnia toxicities of some of the CH3-group compounds were underestimated by these models. Nevertheless, we concluded that the QSAR models based on the PEOE descriptors were practical for predicting acute toxicity, especially for α,β-unsaturated carbonyl compounds with an α-hydrogen. Combining hydrophobicity and PEOE descriptors led to accurate predictions for fish toxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.