Abstract

Ambient conditions, especially temperature and humidity, have a huge impact on the performance of an air quality sensor. In this paper, four correction models were built to compensate the impact of ambient conditions. Linear regression and machine learning algorithms were used for building the models. Correction models were trained by using three types of measurement data. Raw measurement data was used in the first case. Secondly, measurement data was corrected and a significant improvement was shown. Lastly, measurements of various ambient conditions were used as well. Using corrected and extended measurement data brought a great improvement in accuracy of the models. A neural network correction model proved to be the most efficient in all cases. Compensating the impact of ambient conditions on the performance of an air quality sensor by using correction models was efficient and this method could be used in the air quality monitoring applications. This is of particular importance for usage of low-cost sensors in the air quality monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.