Abstract

Many application areas such as semiconductor manufacture, precision optics alignment, and microbiological cell manipulation require ultraprecision positioning systems with a high positioning resolution and large motion range. This article describes the development of a compact high precision linear piezoelectric stepping positioner for precision alignment of optical elements. The positioner is designed to have a compact and symmetric structure, high positioning resolution, large motion range, high force density, adequate dynamic range, and power-off hold. The positioner is fabricated according to these specifications and performance evaluation tests are carried out. A resolution of 10 nm, speed of 1 mms, push force of 25 N, and stiffness of 10.4 N/microm are attained while maintaining a compact size of 32x42x60 mm(3). The required power consumption is 52.33 W. The test results confirm that the developed positioner could be successfully applied to the precision alignment of optical elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.