Abstract

Novel carbamates as derivatives of 3-(1H-imidazol-4-yl)propanol with an N-alkyl chain were prepared as histamine H3-receptor antagonists. Branching of the N-alkyl side chain with methyl groups led to chiral compounds which were synthesized stereospecifically by a Mitsunobu protocol adapted Gabriel synthesis. The optical purity of some of the chiral compounds was determined (ee > 95%) by capillary electrophoresis (CE). The investigated compounds showed pronounced to high antagonist activity (Ki values of 4.1-316 nM) in a functional test for histamine H3 receptors on rat cerebral cortex synaptosomes. Similar H3-receptor antagonist activities were observed in a peripheral model on guinea pig ileum. No stereoselective discrimination for the H3 receptor for the chiral antagonists was found with the in vitro assays. All compounds were also screened for central H3-receptor antagonist activity in vivo in mice after po administration. Most compounds were potent agents of the H3-receptor-mediated enhancement of brain Ntau-methylhistamine levels. The enantiomers of the N-2-heptylcarbamate showed a stereoselective differentiation in their pharmacological effect in vivo (ED50 of 0.39 mg/kg for the (S)-derivative vs 1.5 mg/kg for the (R)-derivative) most probably caused by differences in pharmacokinetic parameters. H1- and H2-receptor activities were determined for some of the novel carbamates, demonstrating that they have a highly selective action at the histamine H3 receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.