Abstract

Therapeutic monoclonal antibodies (mAbs) have important roles in treatments for various cancers and inflammatory diseases. Their highly target specificities provide controlled safety profiles. However, therapeutic mAbs commonly pose a risk of the induction of the release of cytokines, which may result in adverse events including infusion reaction and cytokine release syndrome. Several mechanisms are involved in the cytokine releases induced by therapeutic mAbs, and the activation of immune effector cells via Fcγ receptors (FcγRs) is one of the putative mechanisms for most IgG-subclass mAbs. The relationship between cytokine releases and mAbs' Fc functions is not fully understood. Here we developed a simple reporter cell-based assay for estimating the FcγR-mediated activation of human immune effector cells by mAbs. Our use of the cell-based assay to compare Fc-engineered mAbs with different FcγR-activation profiles revealed that the releases of inflammatory cytokines and chemokines from human peripheral blood mononuclear cells (hPBMCs) induced by the mAbs were elevated by treatment with Fc-engineered mAbs with higher FcγR-activation properties. Our results also suggested the involvement of monocytic effector cells in the activation of hPBMCs as sources of released cytokines and chemokines, which may lead to the immune cell-mediated adverse events. Our new reporter cell assay is a promising tool for evaluating and predicting the activation of human immune cells by novel Fc-engineered mAbs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.