Abstract

This study aimed to enhance carboxymethyl cellulose (CMC)-based films by incorporating zinc oxide nanoparticles (ZnO NPs) and cress seed mucilage (CSM), with a view to augmenting the physical, mechanical, and permeability properties of the resulting nanocomposite films. For the first time, CSM was exploited as a green surfactant to synthetize ZnO NPs using hydrothermal method. Seven distinct film samples were meticulously produced and subjected to a comprehensive array of analyses. The findings revealed that the incorporation of CSM/ZnO-5 % improved the physical properties of the films, demonstrating a significant reduction in moisture content and water vapor permeability (WVP). Increasing the concentration of NPs in conjunction with CSM markedly decreased the solubility of the nanocomposites by up to 56 %. The films containing CSM/ZnO showed higher tensile strength and elongation at the break values. The UV absorption of the films exhibited a substantial rise with the addition of ZnO NPs, particularly with an increased content in the presence of CSM. The thermal stability of nanocomposites containing a high concentration of CSM/ZnO exhibited an improvement compared to the control sample. In light of these results, the CMC/CSM/ZnO-5 % film emerges as a promising candidate for a biocompatible packaging material, exhibiting favorable physical characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.