Abstract

Abstract Genetic code manipulation enables the ribosomal synthesis of peptide libraries bearing diverse nonproteinogenic amino acids, which can be applied to the discovery of bioactive peptides in combination with screening methodologies, such as mRNA display. Despite a tremendous number of successes in incorporation of l-α-amino acids with non-proteinogenic sidechains and N-methyl-l-α-amino acids into nascent peptide chains, d-, β-, and γ-amino acids have suffered from low translation efficiency. This obstacle has been hindering their integration into such peptide libraries. However, the use of engineered tRNAs, which can effectively recruit EF-Tu or/and EF-P, has recently made possible significant improvement of their incorporation efficiency into nascent peptides. This article comprehensively summarizes advances in such methodology and applications to the discovery of peptide ligands against target proteins of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.