Abstract

A reduced-activation steel having a nominal chemical composition of Fe, 9% Cr, 2% W, 0.25% V, 0.1% Ta, and 0.1% C was mechanically alloyed with a fine dispersion of Y2O3 and TiO2 to assess the potential for extending the elevated temperature limit of this alloy for structural applications. The total oxide dispersion content was varied from 0.25% to 1% and the molar ratio, TiO2/Y2O3 from 0 to 2. An argon atomized 9Cr2WVTa steel powder was ball milled under vacuum, extruded at 1150°C to a 16 to 1 reduction in area, followed by a normalize and age heat treatment. Mechanical properties were assessed by elevated temperature tensile tests over the temperature range from room temperature to 800°C. Transmission electron microscopy revealed a favorable dispersion of the oxide particles. Oxide dispersion strengthening by mechanical alloying resulted in significant improvement in elevated temperature tensile strengths. Extended ball-milling times improved oxide dispersion, microstructural refinement, and mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.