Abstract

This paper describes the development of a new ion mobility spectrometer (IMS) using the radio-frequency (RF) electric field. The proposed IMS has high ion transmission efficiency. Seven connected IMS devices, in which the RF and DC electric fields are created by separate electrodes, are constructed. The ions are confined by the RF electric field and drifted by the DC electric field. The electrodes in each IMS device include short quadrupole electrodes and segmented vane electrodes. The uniform electric field in the IMS is verified by simulated results obtained using SIMION. To measure the exact value of reduced mobility K 0 at low Td (1 Td = 10-17 V cm2), two ion gates are installed in the IMS. By installing the ion gates at suitable positions for eliminating the effect of gas flow, the exact ion velocity through the IMS can be measured. The K 0 values of O2 + and C6H6 + ions are measured as a function of Td. In addition, the K 0 of CH3OCH2 + fragment ions is measured. These K 0 measurement results are consistent with previous results obtained using electrostatic drift tube apparatus. In summary, as our IMS can measure K 0 under low Td conditions, it can be used to better understand the structure of small molecular or fragment ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.