Abstract

An intermittency transport equation is developed in this study to model the laminar-turbulence boundary layer transition at supersonic and hypersonic conditions. The model takes into account the effects of different instability modes associated with the variations in Mach numbers. The model equation is based on the intermittency factor γ concept and couples with the well-known SST k–ω eddy-viscosity model in the solution procedures. The particular features of the present model approach are that: (1) the fluctuating kinetic energy k includes the non-turbulent, as well as turbulent fluctuations; (2) the proposed transport equation for the intermittency factor γ triggers the transition onset through a source term; (3) through the introduction of a new length scale normal to wall, the present model employs the local variables only avoiding the use of the integral parameters, like the boundary layer thickness δ, which are often cost-ineffective with the modern CFD methods; (4) in the fully turbulent region, the model retreats to SST model. This model is validated with a number of available experiments on boundary layer transition including the incompressible, supersonic and hypersonic flows past flat plates, straight/flared cones at zero incidences, etc. It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition with a reasonably wide range of Mach numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.