Abstract
The insect metalloproteinase inhibitor (IMPI) represents the first peptide capable of inhibiting virulence-mediating microbial M4-metalloproteinases and is promising as a therapeutic. The purpose of this study was to develop a suitable drug carrier system for the IMPI drug to enable treatment of chronic wound infections. Specifically, we studied on poloxamer 407 hydrogels, examining the influence of several additives and preservatives on the rheological parameters of the hydrogels, the bioactivity and release of IMPI. The rheological characterisation of the hydrogel was performed by oscillatory measurements. The bioactivity of IMPI was evaluated in a Casein fluoresence quenching assay. In this study, a suitable application form for the dermal treatment of chronic wound infections with IMPI was designed. The influences of poloxamer 407 concentration and various additives on the viscoelastic properties and preservation of a thermosensitive hydrogel were investigated. The incorporation of the precursor drug IMPI-gluthathione-s-transferase (GST) in the hydrogel had no influence on the rheological characteristics and will be released. The bioactivity of IMPI-GST is not influenced by the hydrogel and remains constant over 4 weeks of storage. This study reports the development of a poloxamer hydrogel as a suitable carrier system for the application of IMPI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.